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Abstract

A state space formalism for electrothermoelastic analysis of a linear piezoelectric body is developed. A novel feature
of the formalism is that by proper grouping of the field variables and using matrix notations the three-dimensional
equations of piezothermoelasticity are concisely formulated into a state equation and an output equation, which bear a
striking resemblance to their elastic counterparts. The formalism is remarkably simple, with which one deals with only
three vector quantities with the 13 independent electromechanical variables as their components and six submatrices
that represent all the material constants for a piezoelectric material of the most general kind. In this work emphasis is
placed on the state space formulation and solution to the generalized plane problem. Exact solutions for a piezoelectric
half-space under a line of electromechanical loading and an infinite piezoelectric plate with an elliptical notch subjected
to inplane loads are determined with relative ease. In many cases, piezoelectric solutions can be obtained directly from
the corresponding elastic solutions by a simple replacement of the corresponding matrices on the basis of the formalism.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When a piezoelectric body is subjected to electromechanical loading, the electric and mechanical fields
interact. In linear piezoelectricity the equations of elasticity are coupled to the equations of electrostatics
through piezoelectric constants (Tiersten, 1969; Nowacki, 1975). Due to the electromechanical coupling
and material anisotropy, electroelastic analysis is much more involved than its elastic counterpart. For
problems in the Cartesian coordinate system it is natural to extend the Stroh formalism of anisotropic
elasticity to include the piezoelectric effects. Such an extension was considered by Barnett and Lothe (1975)
in studying the line charge—dislocation solution for a piezoelectric medium. Ting and his associate (Chung
and Ting, 1995a,b, 1996; Ting, 1996) described an octet formalism for piezoelectric materials and applied it
to the problem of a line force, a line dislocation, and a line charge in anisotropic piezoelectric spaces or
wedges, and to a two-dimensional piezoelectric medium with an elliptic inclusion or hole. It is known that
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the Stroh formalism is intended for two-dimensional deformations of anisotropic elastic materials. The
formalism is not well suited for problems in the cylindrical coordinate system.

The present work extends the state space formalism for anisotropic elasticity (Tarn, 2002a,b) to include
the piezoelectric effects. In linear piezothermoelasticity the basic equations involve 54 piezothermoelastic
constants for a piezoelectric material of the most general kind (Nye, 1957) and 13 independent electro-
mechanical field variables (three displacements u;, six stresses o;;, three electric displacement components D;
and one electric potential ¢). The formulation would be intractable if the derivation is based on the
equations as they stand. Guided by the experience with anisotropic elasticity, we group the field variables
into two parts: T, = [g12, 022, 023, D,], consisting of the components with one of the subscripts being 2, and
the remaining components, t, = [013, 011, 933, D1, D3]. The choice of the field variables in a grouping de-
pends on the problem under study. This particular choice is advantageous when the traction and electric
charge are prescribed on the planes x, = constant. By means of the judicious grouping and defining the
matrix differential operators all the equations of piezothermoelasticity, including the constitutive equations,
the equilibrium equations, the strain—displacement relations, the equations of electrostatics and the electric
field—electric potential relations, are concisely formulated into two matrix differential equations in which
the field variables appear in a direct and clear manner. The equations bear a remarkable resemblance to
their elastic counterparts. Accordingly, derivation of the state equation and output equation follow the
same line, leading to the same matrix state equation and output equation as those in anisotropic elasticity
except for the entities of the matrices involved. The formalism brings in the stage u = [uy, us, u3, ¢}, 71, 12,
and six sub-matrices of the piezothermoelastic constitutive matrix as the principal characters, the individual
field variables and piezothermoelastic constants no longer play essential roles. Moreover, u and t, are the
only unknowns in the state equation. The analytic approach for anisotropic elasticity is carried over to
piezothermoelasticity. When applied to generalized plane problems of a piezoelectric body, the homoge-
neous solution to the state equation takes the form of analytic functions of complex variables and the
particular solution accounts for the effects of antiplane deformations, including extension, twisting and
bending. The elastic solution is reproduced by setting the piezoelectric coefficients equal to zero.

The state space formalism is simple in concept and elegant in operation. In the present work the focus is
on the basic formulation in the state space setting and attention is paid to the general solution to the
generalized plane problems. For illustration, the problems of half-space and a plate with a notch are
studied. Exact solutions for a piezoelectric half-space under a line of electromechanical loading and an
infinite piezoelectric plate with an elliptical hole subjected to uniform extension are determined with relative
ease.

2. State space formulation

We consider the piezoelectric material of the most general kind. The linear piezothermoelastic constit-
utive equations written out in full are (Nye, 1957; Nowacki, 1975)

o11 Ci1 Ci2 Ci13 Cis Ci5 Cig €1 €1 €3] e11 i 51
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where o;; and ¢; are the stress and strain tensors, D; and E; are the electric displacement and electric field
vectors, T is the temperature field, c;; the 21 elastic constants measured at a constant electric field and
constant temperature, k;; the permittivity constants measured at constant strain and constant temperature,
e;; the piezoelectric constants measured at constant temperature, f§; the thermal coefficients measured at
constant electric field, p¢ the pyroelectric constants measured at constant strain.

Eq. (1) is the constitutive relations for piezoelectric materials of all the 32 crystal classes (Nye, 1957) and
piezoelectric ceramics. There are 54 independent piezothermoelastic constants in total for a piezoelectric
material of the most general kind. The piezoelectric body may exhibits special type of material anisotropy,
including among others, the monoclinic system of class 2 polarized in the x,-direction by setting ¢;; =0
(i=1,2,3,5 j=4,6), ;=0 (=13, j=1,2,3,5), exs =0, 1 = k3 = 4 = fs = p] = p§ = 0; the or-
thorhombic system of class mm2 polarized in the x,-direction by setting in addition, ¢;s =0 (i = 1,2, 3),

Ca = ey = €5 = €36 = K13 = fis = 0, c11 = ¢33, €12 = €23, Caa = Cep, €21 = €23, €16 = €34, K11 = K33, f; = P5. In
particular, Eq. (1) includes the constitutive equations of anisotropic elastic materials as a special case with
€j = 0.

The strain—displacement relations are
&y = (wij+u;4)/2, 2)

where u; denotes the displacement components, a comma indicates differentiation with respect to the suffix
variable.
The equations of motion are

azui
oyt =p730 (3)

where F; denotes the body force components.
The equations of electrostatics without the free charge are

Di,i == 0 (4)

and the relations between the electric field and the electric potential are
Ei=—d, (5)

where ¢ is the electric potential.

The formulation could be greatly simplified if the field variables are grouped properly. For the problems
in the Cartesian coordinate system, if the x,-axis is pointed in the thickness direction, the traction vector on
the planes x, = constant are (o2, 02, 023), thus the traction boundary conditions and the interfacial con-
tinuity conditions are directly associated with them. Furthermore, the normal electric displacement D, are
also associated with these conditions. With this in mind, we group the field variables into two parts: one
consists of the components associated with the subscript 2, another consists of the remaining components,
and rewrite Eq. (1) as

| _|Cu Cofln| |B
[72] a [Csz sz] L’j [ﬂ;]T’ (6)
where

1:1:[013 on 03 Dy D3]T, 1'2:[012 O 023 DZ]T,

y=[2e35 en &3 —E —E3]T, Y, =261 en 2éx —Ez]T7
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The strain—displacement relations may be expressed as

MRS

where O; stands for the partial derivative with respect to x;, and

u=[u u us ¢}T, L, = K0, +Ky03, L, =K30; + K403,

0010 100 0 010 o 00 o0 o
100 0 000 0 PO PO
Ki=[0 000/, Kk=|0 01 0], Kic K=
000 0 010 0
0001 0000 00 0 0 00 0 0
000 0 000 1

The strain and the electric field vector are intermediate variables. Expressing them in terms of the stress and
the electric potential by substituting Eq. (3) into Eq. (2), one obtains

[rl } _ |:(C11L1 + C12L2)u:| |:C1262u:| _ [ﬁl ] T (7)
7 (CHLLi + CxLo)u C50.u Br|

On defining the K; matrices and the differential operators L; and L,, the equations of motion and the
equation of electrostatics can be written in a single matrix equation as

62
o+ Lt +Litn, +F= K,~5u, (8)
where
R p 0 0 0
B 0 p 00
F=1r| Kf’_oopo
0 00 00

Egs. (7) and (8) embrace the three-dimensional equations of piezothermoelasticity in full. They bear a
remarkable resemblance to their elastic counterparts (Tarn, 2002a), differing only in the entities of the
matrices due to the piezoelectric effects. With the basic equations so expressed, the individual components
of the field variables and constitutive matrices are no longer in view—they are replaced by u, 7, 7,, C,3 and
B, (o, p = 1,2) which play the principal roles hereafter. Note that it is possible to group the field variables
in other ways. For a new grouping only the matrices C,4, K; and K, need to be adjusted accordingly.
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Following the derivation for anisotropic elasticity (Tarn, 2002a), choosing [u, rz]T as the state vector, one
can write out at once the state equation and the output equation of piezothermoelasticity as follows:

0 [u D, C,][u Cy, B, 0] &[0
= — Pl _ 2
Ox; [72] [DZI D [ [ N LB, F|on Kou]’ ®)
- u N
7 =[CyLy C12C2_21]|:12:| - BT, (10)
where

D11 = _CEZIC_{le - L27 D21 = _L—lrélth

C,=Cj— C12C;21C|T2, B =8 - C12C521ﬁ2~

It is readily shown, in the same way as for anisotropic elasticity, that the stiffness-based and compliance-
based formalisms are completely equivalent.

3. Generalized plane problems

Let us focus on the static response of the piezoelectric body under electromechanical loadings that do
not vary in the x;-axis. The problem is referred to as the generalized plane problem, including generalized
plane strain and generalized torsion of the body. For this class of problem the stress and strain fields are
independent of x;. The displacement field is given by

up :u—b1x§/2—19x2X3 —CU3X2+0)2X3+M0, (11)
125 :vfb2x§/2+19x1m+w3x1 7601X3+D(), (12)
Uy = w -+ (blxl + bzXz + 8))63 — X1 + wi1xy + Wo, (13)

where u, v, w are unknown functions of x; and x,; w, w,, w3 and ug, vy, Wy are constants characterizing the
rigid body displacements. The constant ¢ is a uniform extension, ¥ is associated with the curvature due to
twisting, b; and b, are associated with the curvatures due to bending.

On substituting Eqgs. (11)—(13) in Egs. (9) and (10), the state equation and the output equation for the
generalized plane problem read

clel-ser e e[ - )

— = - Ll 14
@xz{i’z] { —A0; —ATCLO | [ p LB, f]’ (14)
T = [6111(161 C12C2_21 } |::_12:| + 611[(8+b1)€1 +b2)€2)k1 — 19)(?21(2] — ﬁlTa (15)

where T = T'(x;,x;), the body force F; should not present, and
i=(u v w ¢]', f=[R K 0 0],

A= C1T2K1 + CKj, A, = KIT(NjHKh

P = nglcsz[(S + bixi + baxy)ky — 793‘21‘2] + Ux ks, p, = b [513 0 ¢35 e T,
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Let us seek the homogeneous solution of Eq. (14) in the form
u = UF(z), 7, = SF'(2), (16)

where U and S are constant vectors, each has four components; F(z) is an unknown function, F'(z) =
dF(z)/dz, z = x; + px,, p is a constant parameter to be determined.
Substituting Eq. (16) in Eq. (14) yields the eigen relation:
_Cz_zlAl Cz_zl

—Ay  —AC, FSJ]PFSJ], (17

where p is the eigenvalue, [U, S]T is the eigenvector. For a given material the eigenvalues and eigenvectors
can be easily determined using Mathematica or MATLAB.
Expressing S in terms of U using Eq. (17); gives

S = (A +pCx)U. (18)
Substituting Eq. (18) in Eq. (17), leads to
[As + p(A1 + A]) + p*Cx]U = 0, (19)
where

A; = K[C K, + K[ CpK; + KICLK, + K] CpKs.
Non-trivial solution to Eq. (19) exists if and only if the determinant of the coefficient matrix vanish,
|As + p(Ar + A]) + p’Cy| =0, (20)

in which the explicit expressions of the matrices A; are

Ci6 Ce6 Cs6 €16 i1 Cie Cis €11

Clz2 Cx €25 €12 Ci6 Ce6 Cs6 €16
Al = ) A3 =

Cla C46 C45 €14 Cl5 Cs56 Css €15

€1 €y €5 —Ki2 €11 €6 €15 —Ki

In the absence of the piezoelectric effects, setting e;; = 0 reduces Eq. (20) to the sextic equation of Stroh and
Eq. (17) to the eigen relation posed in the Stroh formalism for anisotropic elasticity.

It can be shown that the p cannot be real by virtue of the positive definiteness of the electric enthalpy,
and there are four pairs of complex conjugate p. Denoting the eigenvalues and the associated eigenvectors
by

De = G +iby,  pipa =pr = ax —iby (b > 0), (21)

Uk+4 = Ulm Sk+4 = gk (k = 1727 374>1 (22)

where ‘1’ is the imaginary number, a; and b, are real, there follow

i= 2Re{ i:Uka(zk)}, (23)
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T = ZRG{ Z A4 +ka12 UkF (Zk)} (24)

4
k=1
1, = 2Re {

where the U, are the eigenvectors associated with p, and

NE

(A +ka22)UkF}; (Zk)}7 (25)

=~
Il

1

Cis  Cs6  Css €15
€11 Ci6 Cis €11
Ay =Cy K +CpKs = | ci3 c36 35 €13
€11 €l €15 —Kii
€31 €3 €35 —Ki3

For a uniform temperature change AT and a constant body force f, the particular solution to the state
equation is easily found to be

u= alx%/Z + ax1x; + a3x§/2, (26)
7, = ¢CLk, — B,AT, (27)
1 = eCp kg — 9C koxy + Cii[(Kya; + b1ky)x; + (Kyjay + bk )xa] — B,AT, (28)

in which a;, a,, a3 are determined from

K'C,Kia, = —p, —f, (29)
Aja; + Cpa, = —blcszkl — 9Cxk, (30)
Aja, + Cpay = —b,CLk, +ICTk,. (31)

The general solution is obtained by superposing Eqs. (23)—(25) and (26)—(28) along with Egs. (11)—(13) as

4
u= ZRC{ Z UkE((Zk)} + ale/2 + a)x1x; + a3x§/2 + ﬁ, (32)
k=1

4
T = 2Re{ Z (A4 + piCro)UrF] (Zk)} + eCiik; — 9C 1 kaxs
=

+Cy (Kia; + b1k )x; + (K2, + boky )xs] — BIAT,

4
T, = ZRe{ Z(Al + piC)ULF, (zk)} + ¢CLk) — B,AT, (34)

=1
in which the complex potentials Fj(z;) for a specific problem are to be determined, and

—b1x3/2 ’19)62)(3 W3Xy + Warx3 + Uy
u= 7b2x /2+19X1X3+603X1 — W1X3 + Vg
(b1x1 —+ bzXz + 8))63 — (WX + w1X —+ Wo
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Except for plane deformations in which the b, b,, ¢ and ¢ are known to be zero in advance, they must be
determined by the end conditions that require the stress resultants over the cross-section Q reduce to an
axial force P,, a torque M,, and bi-axial bending moments M, M,:

/(Hl‘h + Hot,)dx dx; =P, (35)
Q
where
0O 0 1 00 0 0 0 O P.
10 0 x 00 100 0 0 | M
H=19% 0o x5 0ol (o0 0 of P7|m
-x 0 0 0 O 0 0 x4 O M,

As there is a one to one correspondence between the by, b,, ¢, ¢ and the prescribed loads through Eq.
(35), these constants may be regarded as known a priori. It is noteworthy that the general solution to the
generalized plane problems of a piezoelectric body closely resembles its elastic counterpart (Tarn, 2002a),
differing only in the entities of the matrices involved.

4. Half-space under a line of electromechanical loading

The stress distribution in an elastic half-space under line loads or line dislocations is a classical problem
in anisotropic elasticity (Lekhnitskii, 1981). Here the analysis is extended to a piezoelectric half-space
subjected to a line of electromechanical loading and a uniform temperature change. The solution makes use
of the Cauchy integral. It follows essentially the approach given in Section 28 of Lekhnitskii’s monograph.

The mechanical boundary conditions of the problem are

622:N(x1), g1 = T(xl), 023 =0 on xp =0. (36)
The electric boundary conditions are such that either the electric charge or the voltage is prescribed:
Dy =f(x;) or ¢=g(x) on x, =0, (37)

where N(x;), T(x;), f(x1), and g(x;) are prescribed functions of x;.
In case the traction and the electric charge are prescribed, the boundary conditions are particularly
simple in the present context. They are

‘L'z(xl) = [T(xl) N(xl) 0 f(xl) ]T on x; = 0. (38)

Likewise, the displacement and potential prescribed boundary conditions are expressible in terms of u.
When the traction and electric voltage are prescribed, the relevant components can be extracted from the
state vector or may be derived from a new grouping from the beginning.

For illustration, we consider the half-space subjected to the boundary conditions prescribed by Eq. (38).
Imposing Eq. (38) on the general solution yields the following conditions for the complex potentials F} (z):

4
ZRC{ Z(Al +ka22)UkFZ(X1)} = 12()61) — £C~]r2kl + ﬁzAT (39)

k=1
Applying the Cauchy integral formula for analytic functions of complex variables to Eq. (39) yields
1 e Tz(xl) — SCTzkl + ﬂzAT

2 J_ o X —z

4
> (A1 + pCn)UiF (2) =

k=1

dx;. (40)
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This is a system of four equations for four unknown F/(z). On solving them and replacing the variable z in
F] by z, to obtain F](z), it is straightforward to determine the electromechanical field using Eqs. (32)—(35).

We note in passing that the solution for an anisotropic elastic half-space subjected to a line load are
recovered by setting e; = 0 and AT = 0. More importantly, as the state equations in anisotropic elasticity
and piezothermoelasticity are identical in form, in case the boundary conditions of a piezoelectric problem
are also in the same matrix form as their elastic counterparts, (for example, in the absence of electric
variables the traction boundary conditions of elasticity are also expressed by t, for this problem), the pi-
ezoelectric solution can be obtained directly from the corresponding elastic solution by a proper replace-
ment of matrices. Indeed, the solution presented herein can be written out from the solution for the elastic
half-space subjected to a line load. The same is true when u is prescribed.

5. Extension of the piezoelectric plate with an elliptical hole

Numerous solutions to the notch problems of elastic materials have been presented and documented in
monographs (see, for examples, Savin, 1961; Lekhnitskii, 1968, 1981). It is known that determination of the
analytic solution to an anisotropic elastic plate with a hole hinges on the existence of the conformal
mapping functions that transform the exterior of the hole onto the exterior of a unit circle for three complex
variables. It has been shown (Wang and Tarn, 1993) that the conformal mapping in the entire region
outside the unit circle is in general possible only for an elliptical hole, approximate solutions for non-
elliptical hole or rigid inclusion are also studied therein. For piezoelectric materials there are four complex
variables z; = x; + ppxo (k= 1,2,3,4), it is not possible to transform the hole of given shape onto a unit
circle for all the z; except for an elliptical hole.

Various piezothermoelastic problems of an elliptical hole or inclusion can be solved within the context.
As an illustration, we consider the electromechanical field in an infinite piezoelectric plate with an elliptical
hole under uniform extension at infinity.

For the problem under consideration the mechanical boundary conditions at the hole boundary are
traction-free, the electric boundary conditions are such that the normal electric displacement at the
boundary is zero. When the plate is subjected to a remote uniform tension o, in the x;-direction, the
conditions at infinity are

o1 =0y, Opp=013=0y=0y3=03=0, ¢=¢,=constant. (41)

The notch problem under remote loading can be transformed to one with loading on the hole boundary
by superposing the electromechanical field in an infinite piezoelectric plate and the auxiliary one due to
applying to the contour of the hole a negative traction and normal electric displacement that are derived
from the infinite plate solution. This makes the hole boundary traction-free and normal electric displace-
ment zero and the boundary conditions at infinity are satisfied as well, thus yielding the solution to the
original problem.

The electromechanical field in an infinite piezoelectric plate subjected to uniform tension is simply

011 = 0p, Op =013 =0pn =023 = 033 =0; (42)
¢ =¢y, Dy=dnoy, D,=dyoy, D;3=dso0y, (43)

where d;; are the coefficients of the converse piezoelectric effect measured at constant temperature. In the
present notations the electromechanical field is

171:00[0 1 O d11 d31]T, ’CQ:O'O[O 0 0 dzl]T. (44)
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It can be shown by using Eqgs. (19), (24) and (25) that the traction components #; and the normal electric
displacement D, on the hole boundary can be expressed in terms of the complex potential as follows:

4
tl = (’L'-HKl + ‘chg)nU = —ZRB{ ZpkUZ(A}- “!‘kaZZ)Fk/(Zk)}nJ, (45)
k=1
tz—anU—ZRe{ZUTA + pC)F(z )}n(,, (46)
k=1
4
t3—(TlK2+‘EzK4 _ZRC{ZU (As + piAq)F, (k)}nm (47)
k=1
4
D, = (1]Ks + 1, Kq)n _2Re{ZU (A7 + pAg)F(z )}ne, (48)
k=1
where
0000 0 0 0 O cosf) 0
00 00
K 00 0 0 K 0 0 0O i sin 0 n — 0
> T 0 000 07 | 0 |7 ¢ |cosO]’
00 10 0 0 0 1 0 sin 0
_O 0 0 O
_015 Cia Ci3 €31 Cs6 Ca6  C36 €36
As = Cs6  Ca6  C36 €36 ’ Ag = Cys Co4 €23 €32 7
Cs5 C45 C3s €35 C45 Ca4 C34 €34
L€15 €is €13 —Ki3 €5 €24 €3 —K23
[0 0 €11 €] 0 0 e €26
_ 0 0 €16 €26 _ 0 0 €12 €22
Ar = 0 0 e exs |’ As = 0 0 ey €24
_O 0 —K11 —Ki2 0 0 —Kip —Kxn

0 is the angle between the x;-axis and the outward normal to the boundary of the hole, measured counter-
clockwise.
The mapping functions that map the exterior of an ellipse

X2 X2 .
_12_|_b_§:17 xy =acosl, x,=bsinb (49)
a

for all z; onto the exterior of a unit circle in the &, planes are
z = my + ml (50)

where

my = (a —ipb) /2, mi = (a +ipeb) /2.
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The inverse relations are

Zy —+ (Z]% — 4mkﬁ1k)1/2
2mk '

&=

(51)

For the auxiliary problem the electromechanical boundary conditions on the contour of the hole are

1 = —apcos 0, h =1t = 0, D,, = —O'o(dll cos 0 + dz] sin 0) (52)

Imposing the boundary conditions on Egs. (45)—(48), noticing that ¢ = &, = €' on the unit circle, and
/ dé ! 5

F(2) = F(&) o = F(&) : (53)

S
mkék —mkfk

multiplying both sides of the resulting equations by (27i)~ 'de /(& — z) and integrating them around the unit
circle clockwise, one obtains by using the Cauchy integral formula the following equations

4 2n
, I cost

ZPkUZ(AlT +peCo) Fi(2) = == ——=¢"do, (54)
=1 s 0 e’ —z

4
> ULAT + peCo)n Fi(z) = 0, (55)
k=1

4
ZUZ(AS + PiAe)n Fi(z) = 0, (56)
k=1

4 2n :
o diycos 0 + dyy sin 0)
S U (A + i) = 2 [ A TR gy (57)
=l T 0 e’ —Zz
for the four unknown functions F/(z) (k = 1,2,3,4), where
z 4z 0

_ z i(z'-2z) _ z 0

= (myz —myz™") 0 ’ = (mz —Tz ) | z7' +z
0 i(z7!'-2)

On determining F](z) from Egs. (54)—(57) and replacing z by z, the F/(z;) for the auxiliary problem are
obtained. Superposition of the auxiliary solution and the infinite plate solution leads to the electrome-
chanical field in the infinite piezoelectric plate with an elliptical hole as follows:

4
T = 0()[0 1 0 d]] d}] + ZRC{ Z A4 +ka12 UkF (Z]J} (58)
k=1

=00 0 0 dy]" + 2Re{ zﬁt:(A1 +ka22)Uka’(zk)}. (59)

k=1

In closing, we remark that the solution of this problem for anisotropic elastic materials (Lekhnitskii,
1968) is obtained by setting d;; = e¢;; = 0. The notch problems can be solved as well by means of Laurent’s
series of complex variables as exemplified in Lekhnitskii (1981) for the elastic materials.



5184 J.-Q. Tarn | International Journal of Solids and Structures 39 (2002) 5173-5184

6. Concluding remarks

We have shown that the state space formalism is a simple and elegant approach to electrothermoelastic
analysis of a piezoelectric body. Within the state space framework it is possible to derive the solution of
piezothermoelasticity from its elastic counterpart by a replacement of the corresponding matrices. In case
the boundary conditions for the piezoelectric material and for the anisotropic elastic material are in the
same matrix form, the piezoelectric solution may be written out from the elastic solution. It is conceivable
that piezothermoelasticity in the cylindrical coordinate system can be formulated in the same context
following the state space formalism for elasticity with cylindrical anisotropy (Tarn, 2002b). Exact solutions
for solid and hollow cylinders of piezoelectric materials with cylindrically anisotropy have recently been
obtained (Tarn, 2001, 2002¢c) by an explicit formulation. The solution would be much simpler based on the
present formalism.

In the present work we have confined attention to the static responses. In sensing and actuating ap-
plications of piezoelectric materials, vibrations and high frequency responses are of main concern. When
dealing with elastodynamics of piezoelectric materials, albeit the clarity and simplicity of the formalism, the
transient solution in three dimensions remains formidable. Nevertheless, solutions to the state equation for
problems such as thickness vibrations, steady state vibrations of piezoelectric plates, fundamental standing
waves, appear to be attainable. By far the great challenge lies in the three-dimensional analysis of transient
responses. We shall continue the pursuit and develop the formalism along such lines.
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