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Abstract

A state space formalism for electrothermoelastic analysis of a linear piezoelectric body is developed. A novel feature

of the formalism is that by proper grouping of the field variables and using matrix notations the three-dimensional

equations of piezothermoelasticity are concisely formulated into a state equation and an output equation, which bear a

striking resemblance to their elastic counterparts. The formalism is remarkably simple, with which one deals with only

three vector quantities with the 13 independent electromechanical variables as their components and six submatrices

that represent all the material constants for a piezoelectric material of the most general kind. In this work emphasis is

placed on the state space formulation and solution to the generalized plane problem. Exact solutions for a piezoelectric

half-space under a line of electromechanical loading and an infinite piezoelectric plate with an elliptical notch subjected

to inplane loads are determined with relative ease. In many cases, piezoelectric solutions can be obtained directly from

the corresponding elastic solutions by a simple replacement of the corresponding matrices on the basis of the formalism.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When a piezoelectric body is subjected to electromechanical loading, the electric and mechanical fields
interact. In linear piezoelectricity the equations of elasticity are coupled to the equations of electrostatics
through piezoelectric constants (Tiersten, 1969; Nowacki, 1975). Due to the electromechanical coupling
and material anisotropy, electroelastic analysis is much more involved than its elastic counterpart. For
problems in the Cartesian coordinate system it is natural to extend the Stroh formalism of anisotropic
elasticity to include the piezoelectric effects. Such an extension was considered by Barnett and Lothe (1975)
in studying the line charge–dislocation solution for a piezoelectric medium. Ting and his associate (Chung
and Ting, 1995a,b, 1996; Ting, 1996) described an octet formalism for piezoelectric materials and applied it
to the problem of a line force, a line dislocation, and a line charge in anisotropic piezoelectric spaces or
wedges, and to a two-dimensional piezoelectric medium with an elliptic inclusion or hole. It is known that
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the Stroh formalism is intended for two-dimensional deformations of anisotropic elastic materials. The
formalism is not well suited for problems in the cylindrical coordinate system.

The present work extends the state space formalism for anisotropic elasticity (Tarn, 2002a,b) to include
the piezoelectric effects. In linear piezothermoelasticity the basic equations involve 54 piezothermoelastic
constants for a piezoelectric material of the most general kind (Nye, 1957) and 13 independent electro-
mechanical field variables (three displacements ui, six stresses rij, three electric displacement components Di

and one electric potential /). The formulation would be intractable if the derivation is based on the
equations as they stand. Guided by the experience with anisotropic elasticity, we group the field variables
into two parts: s2 ¼ ½r12; r22; r23;D2�, consisting of the components with one of the subscripts being 2, and
the remaining components, s1 ¼ ½r13; r11; r33;D1;D3�. The choice of the field variables in a grouping de-
pends on the problem under study. This particular choice is advantageous when the traction and electric
charge are prescribed on the planes x2 ¼ constant. By means of the judicious grouping and defining the
matrix differential operators all the equations of piezothermoelasticity, including the constitutive equations,
the equilibrium equations, the strain–displacement relations, the equations of electrostatics and the electric
field–electric potential relations, are concisely formulated into two matrix differential equations in which
the field variables appear in a direct and clear manner. The equations bear a remarkable resemblance to
their elastic counterparts. Accordingly, derivation of the state equation and output equation follow the
same line, leading to the same matrix state equation and output equation as those in anisotropic elasticity
except for the entities of the matrices involved. The formalism brings in the stage u ¼ ½u1; u2; u3;/�, s1, s2,
and six sub-matrices of the piezothermoelastic constitutive matrix as the principal characters, the individual
field variables and piezothermoelastic constants no longer play essential roles. Moreover, u and s2 are the
only unknowns in the state equation. The analytic approach for anisotropic elasticity is carried over to
piezothermoelasticity. When applied to generalized plane problems of a piezoelectric body, the homoge-
neous solution to the state equation takes the form of analytic functions of complex variables and the
particular solution accounts for the effects of antiplane deformations, including extension, twisting and
bending. The elastic solution is reproduced by setting the piezoelectric coefficients equal to zero.

The state space formalism is simple in concept and elegant in operation. In the present work the focus is
on the basic formulation in the state space setting and attention is paid to the general solution to the
generalized plane problems. For illustration, the problems of half-space and a plate with a notch are
studied. Exact solutions for a piezoelectric half-space under a line of electromechanical loading and an
infinite piezoelectric plate with an elliptical hole subjected to uniform extension are determined with relative
ease.

2. State space formulation

We consider the piezoelectric material of the most general kind. The linear piezothermoelastic constit-
utive equations written out in full are (Nye, 1957; Nowacki, 1975)

r11

r22

r33

r23

r13

r12

D1

D2

D3

26666666666664

37777777777775
¼

c11 c12 c13 c14 c15 c16 e11 e21 e31
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c15 c25 c35 c45 c55 c56 e15 e25 e35
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�
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T ; ð1Þ
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where rij and eij are the stress and strain tensors, Di and Ei are the electric displacement and electric field
vectors, T is the temperature field, cij the 21 elastic constants measured at a constant electric field and
constant temperature, jij the permittivity constants measured at constant strain and constant temperature,
eij the piezoelectric constants measured at constant temperature, bi the thermal coefficients measured at
constant electric field, pe

i the pyroelectric constants measured at constant strain.
Eq. (1) is the constitutive relations for piezoelectric materials of all the 32 crystal classes (Nye, 1957) and

piezoelectric ceramics. There are 54 independent piezothermoelastic constants in total for a piezoelectric
material of the most general kind. The piezoelectric body may exhibits special type of material anisotropy,
including among others, the monoclinic system of class 2 polarized in the x2-direction by setting cij ¼ 0
(i ¼ 1; 2; 3; 5, j ¼ 4; 6), eij ¼ 0 (i ¼ 1; 3, j ¼ 1; 2; 3; 5), e24 ¼ 0, j12 ¼ j23 ¼ b4 ¼ b6 ¼ pr

1 ¼ pr
3 ¼ 0; the or-

thorhombic system of class mm2 polarized in the x2-direction by setting in addition, ci5 ¼ 0 ði ¼ 1; 2; 3Þ,
c46 ¼ e14 ¼ e25 ¼ e36 ¼ j13 ¼ b5 ¼ 0, c11 ¼ c33, c12 ¼ c23, c44 ¼ c66, e21 ¼ e23, e16 ¼ e34, j11 ¼ j33, b1 ¼ b3. In
particular, Eq. (1) includes the constitutive equations of anisotropic elastic materials as a special case with
eij ¼ 0:

The strain–displacement relations are

eij ¼ ðui;j þ uj;iÞ=2; ð2Þ

where ui denotes the displacement components, a comma indicates differentiation with respect to the suffix
variable.

The equations of motion are

rij;j þ Fi ¼ q
o2ui
ot2

; ð3Þ

where Fi denotes the body force components.
The equations of electrostatics without the free charge are

Di;i ¼ 0 ð4Þ

and the relations between the electric field and the electric potential are

Ei ¼ �/;i; ð5Þ

where / is the electric potential.
The formulation could be greatly simplified if the field variables are grouped properly. For the problems

in the Cartesian coordinate system, if the x2-axis is pointed in the thickness direction, the traction vector on
the planes x2 ¼ constant are ðr12; r22; r23Þ, thus the traction boundary conditions and the interfacial con-
tinuity conditions are directly associated with them. Furthermore, the normal electric displacement D2 are
also associated with these conditions. With this in mind, we group the field variables into two parts: one
consists of the components associated with the subscript 2, another consists of the remaining components,
and rewrite Eq. (1) as

s1

s2

� �
¼ C11 C12

CT
12 C22

� �
c1

c2

� �
� b1

b2

� �
T ; ð6Þ

where

s1 ¼ ½ r13 r11 r33 D1 D3 �T; s2 ¼ ½ r12 r22 r23 D2 �T;

c1 ¼ ½ 2e13 e11 e33 �E1 �E3 �T; c2 ¼ ½ 2e12 e22 2e23 �E2 �T;
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C11 ¼

c55 c15 c35 e15 e35

c15 c11 c13 e11 e31

c35 c13 c33 e13 e33

e15 e11 e13 �j11 �j13

e35 e31 e33 �j13 �j33

266664
377775; C12 ¼

c56 c25 c45 e25

c16 c12 c14 e21

c36 c23 c34 e23

e16 e12 e14 �j12

e36 e32 e34 �j23

266664
377775; b1 ¼

b5

b1

b3

�pe
1

�pe
3

266664
377775;

C22 ¼

c66 c26 c46 e26

c26 c22 c24 e22

c46 c24 c44 e24

e26 e22 e24 �j22

2664
3775; b2 ¼

b6

b2

b4

�pe
2

2664
3775:

The strain–displacement relations may be expressed as

c1

c2

� �
¼ L1u

L2u

� �
þ o2

0

u

� �
;

where oi stands for the partial derivative with respect to xi, and

u ¼ ½ u1 u2 u3 / �T; L1 ¼ K1o1 þ K2o3; L2 ¼ K3o1 þ K4o3;

K1 ¼

0 0 1 0
1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

266664
377775; K2 ¼

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

266664
377775; K3 ¼

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2664
3775; K4 ¼

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

2664
3775:

The strain and the electric field vector are intermediate variables. Expressing them in terms of the stress and
the electric potential by substituting Eq. (3) into Eq. (2), one obtains

s1

s2

� �
¼ ðC11L1 þ C12L2Þu

ðCT
12L1 þ C22L2Þu

� �
þ C12o2u

C22o2u

� �
� b1

b2

� �
T : ð7Þ

On defining the Ki matrices and the differential operators L1 and L2, the equations of motion and the
equation of electrostatics can be written in a single matrix equation as

o2s2 þ LT
1 s1 þ LT

2 s2 þ F ¼ Kq
o2

ot2
u; ð8Þ

where

F ¼

F1

F2

F3

0

2664
3775; Kq ¼

q 0 0 0
0 q 0 0
0 0 q 0
0 0 0 0

2664
3775:

Eqs. (7) and (8) embrace the three-dimensional equations of piezothermoelasticity in full. They bear a
remarkable resemblance to their elastic counterparts (Tarn, 2002a), differing only in the entities of the
matrices due to the piezoelectric effects. With the basic equations so expressed, the individual components
of the field variables and constitutive matrices are no longer in view––they are replaced by u, s1, s2, Cab and
ba ða; b ¼ 1; 2Þ which play the principal roles hereafter. Note that it is possible to group the field variables
in other ways. For a new grouping only the matrices Cab, Ki and Kq need to be adjusted accordingly.
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Following the derivation for anisotropic elasticity (Tarn, 2002a), choosing ½u; s2�T as the state vector, one
can write out at once the state equation and the output equation of piezothermoelasticity as follows:

o

ox2

u

s2

� �
¼ D11 C�1

22

D21 DT
11

� �
u

s2

� �
þ C�1

22 b2

LT
1
~bb1

� �
T � 0

F

� �
þ o2

ot2
0

Kqu

� �
; ð9Þ

s1 ¼ ½ eCC11L1 C12C
�1
22

� u

s2

� �
� ~bb1T ; ð10Þ

where

D11 ¼ �C�1
22 C

T
12L1 � L2; D21 ¼ �LT

1
eCC11L1;

eCC11 ¼ C11 � C12C
�1
22 C

T
12;

~bb1 ¼ b1 � C12C
�1
22 b2:

It is readily shown, in the same way as for anisotropic elasticity, that the stiffness-based and compliance-
based formalisms are completely equivalent.

3. Generalized plane problems

Let us focus on the static response of the piezoelectric body under electromechanical loadings that do
not vary in the x3-axis. The problem is referred to as the generalized plane problem, including generalized
plane strain and generalized torsion of the body. For this class of problem the stress and strain fields are
independent of x3. The displacement field is given by

u1 ¼ u� b1x2
3=2 � #x2x3 � x3x2 þ x2x3 þ u0; ð11Þ

u2 ¼ v� b2x2
3=2 þ #x1x3 þ x3x1 � x1x3 þ v0; ð12Þ

u3 ¼ wþ ðb1x1 þ b2x2 þ eÞx3 � x2x1 þ x1x2 þ w0; ð13Þ
where u, v, w are unknown functions of x1 and x2; x1, x2, x3 and u0, v0, w0 are constants characterizing the
rigid body displacements. The constant e is a uniform extension, # is associated with the curvature due to
twisting, b1 and b2 are associated with the curvatures due to bending.

On substituting Eqs. (11)–(13) in Eqs. (9) and (10), the state equation and the output equation for the
generalized plane problem read

o

ox2

~uu
s2

� �
¼ �C�1

22 A1o1 C�1
22

�A2o11 �AT
1C

�1
22 o1

� �
~uu
s2

� �
� p1

p2

� �
þ C�1

22 b2

LT
1
~bb1

� �
T � 0

f

� �
; ð14Þ

s1 ¼ ½ eCC11K1o1 C12C
�1
22

� ~uu
s2

� �
þ eCC11½ðe þ b1x1 þ b2x2Þk1 � #x2k2� � ~bb1T ; ð15Þ

where T ¼ T ðx1; x2Þ, the body force F3 should not present, and

~uu ¼ ½ u v w / �T; f ¼ F1 F2 0 0½ �T;

A1 ¼ CT
12K1 þ C22K3; A2 ¼ KT

1
eCC11K1;

p1 ¼ C�1
22 C

T
12½ðe þ b1x1 þ b2x2Þk1 � #x2k2� þ #x1k3; p2 ¼ b1½ ~cc13 0 ~cc35 ~ee13 �T;
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eCC11 ¼

~cc55 ~cc15 ~cc35 ~ee15 ~ee35

~cc15 ~cc11 ~cc13 ~ee11 ~ee31

~cc35 ~cc13 ~cc33 ~ee13 ~ee33

~ee15 ~ee11 ~ee13 �~jj11 �~jj13

~ee35 ~ee31 ~ee33 �~jj13 �~jj33

266664
377775; k1 ¼

0
0
1
0
0

266664
377775; k2 ¼

1
0
0
0
0

266664
377775; k3 ¼

0
0
1
0

2664
3775:

Let us seek the homogeneous solution of Eq. (14) in the form

~uu ¼ UF ðzÞ; s2 ¼ SF 0ðzÞ; ð16Þ
where U and S are constant vectors, each has four components; F ðzÞ is an unknown function, F 0ðzÞ ¼
dF ðzÞ=dz, z ¼ x1 þ px2, p is a constant parameter to be determined.

Substituting Eq. (16) in Eq. (14) yields the eigen relation:

�C�1
22 A1 C�1

22

�A2 �AT
1C

�1
22

" #
U

S

� �
¼ p

U

S

� �
; ð17Þ

where p is the eigenvalue, ½U;S�T is the eigenvector. For a given material the eigenvalues and eigenvectors
can be easily determined using Mathematica or MATLAB.

Expressing S in terms of U using Eq. (17)1 gives

S ¼ ðA1 þ pC22ÞU: ð18Þ
Substituting Eq. (18) in Eq. (17)2 leads to

½A3 þ pðA1 þ AT
1 Þ þ p2C22�U ¼ 0; ð19Þ

where

A3 ¼ KT
1C11K1 þ KT

1C12K3 þ KT
3C

T
12K1 þ KT

3C22K3:

Non-trivial solution to Eq. (19) exists if and only if the determinant of the coefficient matrix vanish,

jA3 þ pðA1 þ AT
1 Þ þ p2C22j ¼ 0; ð20Þ

in which the explicit expressions of the matrices Ai are

A1 ¼

c16 c66 c56 e16

c12 c26 c25 e12

c14 c46 c45 e14

e21 e26 e25 �j12

2664
3775; A3 ¼

c11 c16 c15 e11

c16 c66 c56 e16

c15 c56 c55 e15

e11 e16 e15 �j11

2664
3775:

In the absence of the piezoelectric effects, setting eij ¼ 0 reduces Eq. (20) to the sextic equation of Stroh and
Eq. (17) to the eigen relation posed in the Stroh formalism for anisotropic elasticity.

It can be shown that the p cannot be real by virtue of the positive definiteness of the electric enthalpy,
and there are four pairs of complex conjugate p. Denoting the eigenvalues and the associated eigenvectors
by

pk ¼ ak þ ibk; pkþ4 ¼ �ppk ¼ ak � ibk ðbk > 0Þ; ð21Þ

Ukþ4 ¼ Uk; Skþ4 ¼ Sk ðk ¼ 1; 2; 3; 4Þ; ð22Þ
where �i� is the imaginary number, ak and bk are real, there follow

~uu ¼ 2Re
X4

k¼1

UkFkðzkÞ
( )

; ð23Þ
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s1 ¼ 2Re
X4

k¼1

ðA4

(
þ pkC12ÞUkF

0

kðzkÞ
)
; ð24Þ

s2 ¼ 2Re
X4

k¼1

ðA1

(
þ pkC22ÞUkF

0

kðzkÞ
)
; ð25Þ

where the Uk are the eigenvectors associated with pk, and

A4 ¼ C11K1 þ C12K3 ¼

c15 c56 c55 e15

c11 c16 c15 e11

c13 c36 c35 e13

e11 e16 e15 �j11

e31 e36 e35 �j13

266664
377775:

For a uniform temperature change DT and a constant body force f, the particular solution to the state
equation is easily found to be

~uu ¼ a1x2
1=2 þ a2x1x2 þ a3x2

2=2; ð26Þ

s2 ¼ eCT
12k1 � b2DT ; ð27Þ

s1 ¼ eC11k1 � #eCC11k2x2 þ C11½ðK1a1 þ b1k1Þx1 þ ðK1a2 þ b2k1Þx2� � b1DT ; ð28Þ

in which a1, a2, a3 are determined from

KT
1
eCC11K1a1 ¼ �p2 � f; ð29Þ

A1a1 þ C22a2 ¼ �b1C
T
12k1 � #C22k1; ð30Þ

A1a2 þ C22a3 ¼ �b2C
T
12k1 þ #CT

12k2: ð31Þ
The general solution is obtained by superposing Eqs. (23)–(25) and (26)–(28) along with Eqs. (11)–(13) as

u ¼ 2Re
X4

k¼1

UkFkðzkÞ
( )

þ a1x2
1=2 þ a2x1x2 þ a3x2

2=2 þ ûu; ð32Þ

s1 ¼ 2Re
X4

k¼1

ðA4

(
þ pkC12ÞUkF 0

kðzkÞ
)

þ eC11k1 � #eCC11k2x2

þ eCC11½ðK1a1 þ b1k1Þx1 þ ðK1a2 þ b2k1Þx2� � b1DT ;

ð33Þ

s2 ¼ 2Re
X4

k¼1

ðA1

(
þ pkC22ÞUkF

0

kðzkÞ
)

þ eCT
12k1 � b2DT ; ð34Þ

in which the complex potentials FkðzkÞ for a specific problem are to be determined, and

ûu ¼
�b1x2

3=2 � #x2x3 � x3x2 þ x2x3 þ u0

�b2x2
3=2 þ #x1x3 þ x3x1 � x1x3 þ v0

ðb1x1 þ b2x2 þ eÞx3 � x2x1 þ x1x2 þ w0

24 35:
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Except for plane deformations in which the b1, b2, e and # are known to be zero in advance, they must be
determined by the end conditions that require the stress resultants over the cross-section X reduce to an
axial force Pz, a torque Mt, and bi-axial bending moments M1, M2:Z

X
ðH1s1 þH2s2Þdx1 dx2 ¼ P; ð35Þ

where

H1 ¼

0 0 1 0 0
0 0 x2 0 0
0 0 �x1 0 0

�x2 0 0 0 0

2664
3775; H2 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 x1 0

2664
3775; P ¼

Pz
M1

M2

Mt

2664
3775:

As there is a one to one correspondence between the b1, b2, e, # and the prescribed loads through Eq.
(35), these constants may be regarded as known a priori. It is noteworthy that the general solution to the
generalized plane problems of a piezoelectric body closely resembles its elastic counterpart (Tarn, 2002a),
differing only in the entities of the matrices involved.

4. Half-space under a line of electromechanical loading

The stress distribution in an elastic half-space under line loads or line dislocations is a classical problem
in anisotropic elasticity (Lekhnitskii, 1981). Here the analysis is extended to a piezoelectric half-space
subjected to a line of electromechanical loading and a uniform temperature change. The solution makes use
of the Cauchy integral. It follows essentially the approach given in Section 28 of Lekhnitskii�s monograph.

The mechanical boundary conditions of the problem are

r22 ¼ Nðx1Þ; r12 ¼ T ðx1Þ; r23 ¼ 0 on x2 ¼ 0: ð36Þ
The electric boundary conditions are such that either the electric charge or the voltage is prescribed:

D2 ¼ f ðx1Þ or / ¼ gðx1Þ on x2 ¼ 0; ð37Þ
where Nðx1Þ, T ðx1Þ, f ðx1Þ, and gðx1Þ are prescribed functions of x1.

In case the traction and the electric charge are prescribed, the boundary conditions are particularly
simple in the present context. They are

s2ðx1Þ ¼ ½ T ðx1Þ Nðx1Þ 0 f ðx1Þ �T on x2 ¼ 0: ð38Þ
Likewise, the displacement and potential prescribed boundary conditions are expressible in terms of u.

When the traction and electric voltage are prescribed, the relevant components can be extracted from the
state vector or may be derived from a new grouping from the beginning.

For illustration, we consider the half-space subjected to the boundary conditions prescribed by Eq. (38).
Imposing Eq. (38) on the general solution yields the following conditions for the complex potentials F 0

kðzkÞ:

2Re
X4

k¼1

ðA1

(
þ pkC22ÞUkF 0

kðx1Þ
)

¼ s2ðx1Þ � eCT
12k1 þ b2DT : ð39Þ

Applying the Cauchy integral formula for analytic functions of complex variables to Eq. (39) yieldsX4

k¼1

ðA1 þ pkC22ÞUkF
0

kðzÞ ¼ � 1

2pi

Z 1

�1

s2ðx1Þ � eCT
12k1 þ b2DT

x1 � z
dx1: ð40Þ
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This is a system of four equations for four unknown F 0
kðzÞ. On solving them and replacing the variable z in

F 0
k by zk to obtain F 0

kðzkÞ, it is straightforward to determine the electromechanical field using Eqs. (32)–(35).
We note in passing that the solution for an anisotropic elastic half-space subjected to a line load are

recovered by setting eij ¼ 0 and DT ¼ 0. More importantly, as the state equations in anisotropic elasticity
and piezothermoelasticity are identical in form, in case the boundary conditions of a piezoelectric problem
are also in the same matrix form as their elastic counterparts, (for example, in the absence of electric
variables the traction boundary conditions of elasticity are also expressed by s2 for this problem), the pi-
ezoelectric solution can be obtained directly from the corresponding elastic solution by a proper replace-
ment of matrices. Indeed, the solution presented herein can be written out from the solution for the elastic
half-space subjected to a line load. The same is true when u is prescribed.

5. Extension of the piezoelectric plate with an elliptical hole

Numerous solutions to the notch problems of elastic materials have been presented and documented in
monographs (see, for examples, Savin, 1961; Lekhnitskii, 1968, 1981). It is known that determination of the
analytic solution to an anisotropic elastic plate with a hole hinges on the existence of the conformal
mapping functions that transform the exterior of the hole onto the exterior of a unit circle for three complex
variables. It has been shown (Wang and Tarn, 1993) that the conformal mapping in the entire region
outside the unit circle is in general possible only for an elliptical hole, approximate solutions for non-
elliptical hole or rigid inclusion are also studied therein. For piezoelectric materials there are four complex
variables zk ¼ x1 þ pkx2 ðk ¼ 1; 2; 3; 4Þ, it is not possible to transform the hole of given shape onto a unit
circle for all the zk except for an elliptical hole.

Various piezothermoelastic problems of an elliptical hole or inclusion can be solved within the context.
As an illustration, we consider the electromechanical field in an infinite piezoelectric plate with an elliptical
hole under uniform extension at infinity.

For the problem under consideration the mechanical boundary conditions at the hole boundary are
traction-free, the electric boundary conditions are such that the normal electric displacement at the
boundary is zero. When the plate is subjected to a remote uniform tension r0 in the x1-direction, the
conditions at infinity are

r11 ¼ r0; r12 ¼ r13 ¼ r22 ¼ r23 ¼ r33 ¼ 0; / ¼ /0 ¼ constant: ð41Þ
The notch problem under remote loading can be transformed to one with loading on the hole boundary

by superposing the electromechanical field in an infinite piezoelectric plate and the auxiliary one due to
applying to the contour of the hole a negative traction and normal electric displacement that are derived
from the infinite plate solution. This makes the hole boundary traction-free and normal electric displace-
ment zero and the boundary conditions at infinity are satisfied as well, thus yielding the solution to the
original problem.

The electromechanical field in an infinite piezoelectric plate subjected to uniform tension is simply

r11 ¼ r0; r12 ¼ r13 ¼ r22 ¼ r23 ¼ r33 ¼ 0; ð42Þ

/ ¼ /0; D1 ¼ d11r0; D2 ¼ d21r0; D3 ¼ d31r0; ð43Þ

where dij are the coefficients of the converse piezoelectric effect measured at constant temperature. In the
present notations the electromechanical field is

s1 ¼ r0½ 0 1 0 d11 d31 �T; s2 ¼ r0½ 0 0 0 d21 �T: ð44Þ
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It can be shown by using Eqs. (19), (24) and (25) that the traction components ti and the normal electric
displacement Dn on the hole boundary can be expressed in terms of the complex potential as follows:

t1 ¼ ðsT
1K1 þ sT

2K3Þnr ¼ �2Re
X4

k¼1

pkU
T
k ðA

T
1

(
þ pkC22ÞF 0

kðzkÞ
)
nr; ð45Þ

t2 ¼ sT
2 nr ¼ 2Re

X4

k¼1

UT
k ðA

T
1

(
þ pkC22ÞF 0

kðzkÞ
)
nr; ð46Þ

t3 ¼ ðsT
1K2 þ sT

2K4Þnr ¼ 2Re
X4

k¼1

UT
k ðA5

(
þ pkA6ÞF 0

kðzkÞ
)
nr; ð47Þ

Dn ¼ ðsT
1K5 þ sT

2K6Þne ¼ 2Re
X4

k¼1

UT
k ðA7

(
þ pkA8ÞF 0

kðzkÞ
)
ne; ð48Þ

where

K5 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

266664
377775; K6 ¼

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

2664
3775; nr ¼

cos h
sin h

0
0

2664
3775; ne ¼

0
0

cos h
sin h

2664
3775;

A5 ¼

c15 c14 c13 e31

c56 c46 c36 e36

c55 c45 c35 e35

e15 e14 e13 �j13

2664
3775; A6 ¼

c56 c46 c36 e36

c25 c24 c23 e32

c45 c44 c34 e34

e25 e24 e23 �j23

2664
3775;

A7 ¼

0 0 e11 e21

0 0 e16 e26

0 0 e15 e25

0 0 �j11 �j12

2664
3775; A8 ¼

0 0 e16 e26

0 0 e12 e22

0 0 e14 e24

0 0 �j12 �j22

2664
3775:

h is the angle between the x1-axis and the outward normal to the boundary of the hole, measured counter-
clockwise.

The mapping functions that map the exterior of an ellipse

x2
1

a2
þ x2

2

b2
¼ 1; x1 ¼ a cos h; x2 ¼ b sin h ð49Þ

for all zk onto the exterior of a unit circle in the nk planes are

zk ¼ mknk þ �mmkn
�1
k ; ð50Þ

where

mk ¼ ða� ipkbÞ=2; �mmk ¼ ðaþ ipkbÞ=2:
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The inverse relations are

nk ¼
zk þ ðz2

k � 4mk �mmkÞ1=2

2mk
: ð51Þ

For the auxiliary problem the electromechanical boundary conditions on the contour of the hole are

t1 ¼ �r0 cos h; t2 ¼ t3 ¼ 0; Dn ¼ �r0ðd11 cos h þ d21 sin hÞ: ð52Þ

Imposing the boundary conditions on Eqs. (45)–(48), noticing that n ¼ nk ¼ eih on the unit circle, and

F
0

kðzÞ ¼ F
0

kðnkÞ
dnk

dzk
¼ F

0

kðnkÞ
nk

mknk � �mmkn
�1
k

; ð53Þ

multiplying both sides of the resulting equations by ð2piÞ�1
dn=ðn � zÞ and integrating them around the unit

circle clockwise, one obtains by using the Cauchy integral formula the following equationsX4

k¼1

pkU
T
k ðA

T
1 þ pkC22Þg1F

0

kðzÞ ¼ � r0

p

Z 2p

0

cos h
eih � z

eih dh; ð54Þ

X4

k¼1

UT
k ðA

T
1 þ pkC22Þg1F

0
kðzÞ ¼ 0; ð55Þ

X4

k¼1

UT
k ðA5 þ pkA6Þg1F

0
kðzÞ ¼ 0; ð56Þ

X4

k¼1

UT
k ðA7 þ pkA8Þg2F

0
kðzÞ ¼

r0

p

Z 2p

0

ðd11 cos h þ d21 sin hÞ
eih � z

eih dh ð57Þ

for the four unknown functions F 0
kðzÞ ðk ¼ 1; 2; 3; 4Þ, where

g1 ¼
z

ðmkz� mkz�1Þ

z�1 þ z
iðz�1 � zÞ

0
0

2664
3775; g2 ¼

z
ðmkz� mkz�1Þ

0
0

z�1 þ z
iðz�1 � zÞ

2664
3775:

On determining F 0
kðzÞ from Eqs. (54)–(57) and replacing z by zk, the F 0

kðzkÞ for the auxiliary problem are
obtained. Superposition of the auxiliary solution and the infinite plate solution leads to the electrome-
chanical field in the infinite piezoelectric plate with an elliptical hole as follows:

s1 ¼ r0½ 0 1 0 d11 d31 �T þ 2Re
X4

k¼1

ðA4

(
þ pkC12ÞUkF 0

kðzkÞ
)
; ð58Þ

s2 ¼ r0½ 0 0 0 d21 �T þ 2Re
X4

k¼1

ðA1

(
þ pkC22ÞUkF 0

kðzkÞ
)
: ð59Þ

In closing, we remark that the solution of this problem for anisotropic elastic materials (Lekhnitskii,
1968) is obtained by setting dij ¼ eij ¼ 0. The notch problems can be solved as well by means of Laurent�s
series of complex variables as exemplified in Lekhnitskii (1981) for the elastic materials.
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6. Concluding remarks

We have shown that the state space formalism is a simple and elegant approach to electrothermoelastic
analysis of a piezoelectric body. Within the state space framework it is possible to derive the solution of
piezothermoelasticity from its elastic counterpart by a replacement of the corresponding matrices. In case
the boundary conditions for the piezoelectric material and for the anisotropic elastic material are in the
same matrix form, the piezoelectric solution may be written out from the elastic solution. It is conceivable
that piezothermoelasticity in the cylindrical coordinate system can be formulated in the same context
following the state space formalism for elasticity with cylindrical anisotropy (Tarn, 2002b). Exact solutions
for solid and hollow cylinders of piezoelectric materials with cylindrically anisotropy have recently been
obtained (Tarn, 2001, 2002c) by an explicit formulation. The solution would be much simpler based on the
present formalism.

In the present work we have confined attention to the static responses. In sensing and actuating ap-
plications of piezoelectric materials, vibrations and high frequency responses are of main concern. When
dealing with elastodynamics of piezoelectric materials, albeit the clarity and simplicity of the formalism, the
transient solution in three dimensions remains formidable. Nevertheless, solutions to the state equation for
problems such as thickness vibrations, steady state vibrations of piezoelectric plates, fundamental standing
waves, appear to be attainable. By far the great challenge lies in the three-dimensional analysis of transient
responses. We shall continue the pursuit and develop the formalism along such lines.
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